Cholinergic Partition Cells and Lamina X Neurons Induce a Muscarinic-Dependent Short-Term Potentiation of Commissural Glutamatergic Inputs in Lumbar Motoneurons
نویسندگان
چکیده
Acetylcholine and the activation of muscarinic receptors influence the activity of neural networks generating locomotor behavior in the mammalian spinal cord. Using electrical stimulations of the ventral commissure, we show that commissural muscarinic (CM) depolarizations could be induced in lumbar motoneurons. We provide a detailed electrophysiological characterization of the muscarinic receptors and the membrane conductance involved in these responses. Activation of the CM terminals, originating from lamina X neurons and partition cells, induced a pathway-specific short-term potentiation (STP) of commissural glutamatergic inputs in motoneurons. This STP is occluded in the presence of the muscarinic antagonist atropine. During fictive locomotion, the activation of the commissural pathways transiently enhanced the motor output in a muscarinic-dependent manner. This study describes for the first time a novel regulatory mechanism of synaptic strength in spinal locomotor networks. Such cellular mechanisms would endow the locomotor central pattern generators with adaptive processes needed to generate appropriate synaptic inputs to motoneurons during different motor tasks.
منابع مشابه
Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells.
The aim of this study was to analyse neurotransmitter content, projection areas and target cells of commissural interneurons with input from group I and/or II muscle afferents in lumbar segments in the cat. Axonal projections of 15 intracellularly labelled commissural interneurons were reconstructed. Ten interneurons (nine located in laminae VI-VII, one in lamina VIII) were glutamatergic; only ...
متن کاملMuscarinic acetylcholine receptor activation prevents disinhibition-mediated LTP in the hippocampus
Disinhibition-mediated long-term potentiation (LTP) in the CA1 region of the hippocampus involves GABAergic synaptic plasticity at feedforward inhibitory inputs, resulting in the reduced shunting of glutamatergic excitatory currents. The GABAergic plasticity which underlies disinhibition-mediated LTP results from a Ca(2+)-dependent decrease in the activity of the K(+)-Cl(-) cotransporter (KCC2)...
متن کاملCholinergic plasticity in the hippocampus.
Tests were made for use-dependent plasticity in the cholinergic projections to hippocampus. Transient infusion of the cholinergic agonist carbachol into hippocampal slices induced rhythmic activity that persisted for hours after washout. Comparable effects were obtained with physostigmine, a drug that blocks acetylcholine breakdown and thereby enhances cholinergic transmission. It thus seems th...
متن کاملFrequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs.
Understanding how striatal neurons integrate glutamatergic and GABAergic inputs is essential for understanding the control of movement and the formation of striatal-based memories. Here we show that GABAergic synapses on striatal medium spiny neurons (MSNs) are more sensitive than glutamatergic synapses on the same cells to endocannabinoid (eCB) signaling, and that protocols that induce short-l...
متن کاملM2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion.
Muscarinic receptors have long been known as crucial players in hippocampus-dependent learning and memory, but our understanding of the cellular underpinnings and the receptor subtypes involved lags well behind. This holds in particular for the hippocampal CA3 region, where the mechanisms of synaptic plasticity depend on the type of afferent input. Williams and Johnston (Williams S, Johnston D....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011